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1 Summary

We evaluate the potential impact of distributed memory parallelization
of CPLEX for solving unit commitment (UC) problems. Earlier studies
have shown that mixed-integer programming (MIP) solvers behave quite
differently from scientific codes (e.g., fluid dynamics or N-body simula-
tion). Increasing the number of threads increases the number tree nodes
explored per unit time (consider it as throughput) but does not necessar-
ily improve the solution time as the search path can be different. Given
more processors, effective use of parallelism to improve performance (to
be exact, solution time) is a challenge.

In this work, the Watson high-performance application team worked
with the CPLEX team for the implementation of two different distributed-
memory solvers in MPI based on CPLEX. Each solver corresponds to one
of the proposed parallelization strategies in earlier studies. With concrete
implementations we are able to evaluate the pros and cons of each strat-
egy.

The first strategy, denoted as approach a in this document, paral-
lelizes the solve by utilizing concurrent CPLEX solvers with different
parameter sets. In our study we evaluated more than twenty parameter
sets (strategies), and show that with proper configurations, coordinated,
concurrent search improves the solution time for all UC models com-
pared with the original CPLEX using the same number of threads. In
some cases the improvement is more than 50%. Although it is hard to
predict the speedup with a massively parallel computer, this result is very
promising considering how elusive it has been to achieve solid speedups.

The second strategy, denoted as approach b, parallelizes the branch-
and-cut search on a distributed-memory cluster. Although direct distributed-
memory parallelization of the branch-and-cut search process has reason-
able parallel efficiency, it does not improve the solution time for the UC
models due to frequent load balancing and interrupt to CPLEX in the
early search phase. Here with an MPI implementation we are able to eval-
uate engineering choices such as communication mode and load-balancing
frequencies.

Our study shows that the ultimate large-scale solver should be a
combination of the two approaches, and can potentially bring significant
performance improvement to solving these models.

2 Foundations for distributed-memory implemen-
tation

Approaches a and b are identified by the Livermore and IBM teams as
two candidate strategies to speed up solving unit commitment problems
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with CPLEX on massively parallel supercomputers. With approach b,
the computing resources in a distributed memory machine (e.g., a clus-
ter of SMPs) are used to explore the branch-and-cut search tree. The
search tree will be distributed among computer nodes, and a mechanism
needs to be developed to control assigning nodes to solvers, querying sta-
tus, and exchanging information such as bounds and feasible solutions.
As common in distributed tree search algorithms, synchronization and
load-balancing among solvers are necessary. Specific to integration with
CPLEX, migration of tree nodes among solvers in the load-balancing
strategy has critical impact on performance. In contrast to approach
b, the solvers in approach a are largely independent. It can be viewed
as multiple search processes from different starting points in the search
space. Minimal exchange of information is necessary. The challenge,
however, is how these solvers can contribute collectively to the search.

Both approaches require a communication mechanism among ma-
chines (processes), which may be implemented with socket, unix pipes,
and in the high performance computing (HPC) setting, MPI. There are
some common functionalities found in both approaches, for example,
starting a remote solve (from the root or from any tree node) and wait-
ing for the remote solve to finish. The CPLEX remote object abstracts
the interfaces needed in both approaches a and b (and other possible
scenarios) to simplify the development of distributed algorithms. For
example, a user can invoke a remote user function on the solvers from
the master. The remote object handles automatically the communication
between the two processes. In most cases, there is no need for the user
to explicitly invoke the MPI communication primitives.

Up to three components comprise a distributed application in the cur-
rent design. They include a master process, a group of solvers/workers
(e.g., CPLEX on a shared-memory node), and an optional piece of dy-
namic library loaded into worker processes. This design is different from
the prevalent SPMD paradigm in current HPC applications. To use the
MPI communication mechanism, the MPI implementation on the tar-
get platforms needs to support the MPMD paradigm. The advantage is
flexible deployment to a wide range of configurations.

In our evaluation and implementation of approaches a and b, the
master manages the search strategies and the solvers. It calls CPLEX
libraries for communicating with and controlling the workers. In this
sense it can be viewed a client in the client/server model. Typically the
communication is between the master and the workers but not among the
workers themselves. This again is very different from most MPI programs
in scientific computing. The master in approach b is fairly complex as
it is responsible for managing the distributed search tree. It decides
which nodes to send to remote solvers and how synchronization and load
balancing are done. The master in approach a collects information from
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the solvers and relays it to the group. In the simplest implementation,
the master in approach a may simply start remotes solves and wait for
their termination. Of course enhancement is necessary for fast solutions
of the UC problems (see Section 4).

The workers are CPLEX processes invoked with the ’–worker’ option.
After startup, they wait for messages/commands from the master. The
differences between approach a and approach b are solely in the master
and the dynamic libraries loaded in the worker.

The following shows how the components of a distributed solver are
deployed with MPI (that supports MPMD) on a cluster.

The solve is invoked from command line as:

/scratch/gcong/openmpi-1.6/bin/mpirun --app apppickedfile

apppickedfile specifies the layout of the processes, and an example is
shown as follows.

-np 1 -machinefile hostfile2 ./rmt-mpi-parmipopt -output-prefixed \

-model=/scratch/gcong/CPLEX/llnl/M07.rew

-np 1 -machinefile hostfile2 \

../../../bin/power64_sles10_4.1/static_pic/cplex -worker=mpi \

-userfunction=mpi-parmipopt_userfunction=REGISTER_USERFUNCTION \

-logfile=server0.log

-np 1 -machinefile hostfile1 \

../../../bin/power64_sles10_4.1/static_pic/cplex -worker=mpi \

-userfunction=mpi-parmipopt_userfunction=REGISTER_USERFUNCTION \

-logfile=server2.log

In this example, we start a master process (rmt-mpi-parmipopt) on
host2 that takes an input model M07.rew. Two workers are started on
host1 and host2.

In our study we use a two-node cluster. Each node has 8 IBM Power7
cores running at 3.61GHz, with each core capable of four-way simulta-
neous multithreading. Power7 executes instructions out-of-order. There
are 12 execution units (including 2 fixed-point units and 2 load/store
units) per core shared by the 4 hardware threads. Each core has 32KB
L1, 256KB L2, and 4MB L3 caches.

In this document, we call the distributed-memory solver in approach
a the concurrent solver and the solver in approach b the parallel solver.
We refer to CPLEX on a shared-memory node as CPLEX or standalone
CPLEX.

We used the following models. The performance and behavior of
CPLEX on an SMP has been studied earlier.

MODEL ( M02 HiLoad ProdCost 0614 CPLEX ) 24 (ST step 24 sample 1MIP).rew
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MODEL ( M03 HiLoad ProdCost 0614 CPLEX ) 22 (ST step 22 sample 1MIP).rew

MODEL ( M04 HiLoad ProdCost 0614 CPLEX ) 11 (ST step 11 sample 1MIP).rew

MODEL ( M05 HiLoad ProdCost 0614 CPLEX ) 18 (ST step 18 sample 1MIP).rew

MODEL ( M06 HiLoad ProdCost 0614 CPLEX ) 7 (ST step 7 sample 1MIP).rew

MODEL ( M07 AllGas ProdCost 0608 CPLEX ) 24 (ST step 24 sample 1MIP).rew

MODEL ( M09 AllGas Need 0608 ) 28 (ST step 28 sample 1 MIP).rew

MODEL ( M10 AllGas Need 0608 ) 19 (ST step 19 sample 1 MIP).rew

For simplicity, we denote these model files as M02.rew through M10.rew,
respectively. Among these models, six (M02-M07) are of the slow-solving
variety (they time out at the California ISO’s time limit of 3 hours) under
the 0.05% optimality tolerance that the customer requires.

3 Concurrent solves (approach a)

Parameter sets can have significant impact on the performance of CPLEX
for the given models. It can take a long time (e.g., more than 1 hour
and up to two hours) to solve most models on a single node. They
are good candidates for trying concurrent solves. Earlier studies have
identified two factors that make concurrent solve with different parameter
sets crucial. First, we observe CPLEX spends a significant amount of
time to process the root node. Second, concurrent solves can provide
enough parallelism to populate a massively parallel computer (e.g., the
BlueGene Q computer). In our study we first evaluate the efficiency of
concurrent solves.

3.1 Parmipopt with primal and dual

The first implementation evaluated is parmipopt. In parmipopt, the mas-
ter starts a few workers to work on the problem and waits for their ter-
mination. Regularly through the remote object mechanism each worker
reports its best primal and dual bounds to the master. The master termi-
nates the search when a predefined optimality gap is reached. parmipopt

demonstrates how to use the CPLEX remote object to implement dis-
tributed solvers.

We first use two parameter sets on two MPI processes. The first
parameter set cranks up heuristic parameters and disables cuts to focus
mainly on the primal part of the problem. The second parameter set
focuses on the dual part of the problem to improve the dual bound. By
assigning different strategies to the processes, we expect upon termina-
tion the best primal and best dual bound come from different solvers.

Table 1 shows the solver that provided the best primal bound and
dual bound for the UC models. Indeed we see the best primals come
from the primal solver and the best duals come from the dual solver.
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This demonstrates how we can use independent solvers in a distributed
environment to speed up the search. To utilize more processors, the
user can set up different random seeds for the primal and dual solvers
by setting the CPX PARAM RANDOMSEED parameter that influences
some of the heuristic choices made by CPLEX during the search.

Models primal-index dual-index

M02 0 1

M03 0 1

M04 0 1

M05 0 1

M06 0 1

M07 0 1

M09 0 1

M010 0 1

Table 1: Solvers that provide the best primal and dual in parmipopt. 0
represents the primal and 1 represents the dual

3.2 Augmenting parmipopt with more parameter sets

CPLEX has a large collection of parameters that emphasize different
strategies. Instead of using simply primal and dual, we next consider
running concurrently parmipopt with four parameter sets, that is, primal,
dual, and default (the default set of CPLEX), and no-flow-cut (flow cuts
are turned off. This was found effective by the Watson team on some
other unit commitment problems). We include default to compare the
performance of other sets against the default CPLEX set.

Table 2 gives the solvers that achieved the best primal bound and dual
bound for the UC models. We see that all of them are from default (Here
0, 1, 2, 3 represent primal, dual, default, and no-flow-cut, respectively).
On one hand, this test shows that the default parameter set of CPLEX
is indeed a good fit for many problems; on the other hand, it shows the
simple approach of completely independent searches probably does not
effectively utilize the computing resources in the parallel computer.

We increased the number of processes (thus the number of heuristic
sets) in our experiments from four to sixteen and then to twenty one.
Each process adopts a different set of parameters. The helpful ones are
listed in the appendix 1. Occasionally we did observe the best bounds
were provided by non-default solvers. For example, better performance
with other sets than default were observed on M09 and M10. As these two

1Some of the parameters listed are subject to change.
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Models primal-index dual-index

M02 2 2

M03 2 2

M04 2 2

M05 2 2

M06 2 2

M07 2 2

M09 2 2

M010 2 2

Table 2: The solvers that provide the best primal and dual with 4 inde-
pendent solvers. default has index 2

models are easy to solve, we conclude that simple, concurrent searches
are not very helpful.

4 Coordinated, concurrent solves

Inspecting the log files from the simple concurrent solver, it is clear to us
that although the overall time spent is the least with default, during the
life time at any certain moment other solvers do discover better solutions.
In concurrent searches some solvers may by chance find good solutions
before others. Instead of kept private, they can be shared with other
solvers to help prune their search trees.

The coordination is currently implemented as follows. The master
installs an infocallback and a heuristiccallback at the workers. Through
the infocallback a solver reports its status to the master at regular inter-
vals. The best primal and dual bounds together with the current best
integer solution are sent to the master. The master keeps track of the
current best primal bound and dual bound and the best feasible solu-
tion reported from all workers. Whenever a new solution is discovered,
the master checks whether it is better than the current best, if so, it
broadcasts the new bound and solution to all workers. At the workers,
the heuristiccallback is called at every viable node in the branch-and-cut
tree with the solution vector for the current relaxation as input. In this
function we retrieve the incumbent and checks whether a solution with
better objective has been received. If so, the heursiticcallback returns
the new objective and received solution to CPLEX.

4.1 Behavior and performance

Table 3 shows with various sets the solvers that returned the final best
primal and dual bounds. Note that in all runs each process uses a differ-

6



ent parameter set.

16× 4 4× 8 8 × 16 8 × 8

Model dl prml dl prml dl prml dl prml

M010 0 3 1 3 0 3 0 5

M02 2 2 0 3 2 2 2 2

M03 7 2 3 2 2 2 3 2

M04 7 9 2 3 2 2 0 6

M05 5 12 2 2 5 7 7 3

M06 10 7 2 2 7 7 6 3

M07 5 6 0 1 1 6 1 6

M09 0 7 1 3 2 6 1 6

Table 3: Solvers that provide the best primal and dual bounds

In table 3 the best primal and dual bounds are no longer always
returned by the default solver. Other solvers provide the best bounds as
well. Table 3 shows parameter sets 0, 1, 2, 3, 6, and 7 are suitable for the
models. They are aggressive root cuts, aggressive probe, no cuts, default,
more gomory cuts, more probes, respectively (for reference check the the
detailed list of parameters in the appendix).

Table 4 shows the execution times with 16 processes, 4 threads per
each process, and 8 processes, 8 threads per each process, in comparison
with standalone CPLEX with 64 threads. For models M02, M03, M04,
M05, and M06, the performance improves significantly. For M09 and
M010, our distributed solver is slower but far below the 2-hour time limit.
The performance for M07, however, becomes worse (in comparison with
standalone CPLEX).

Coordinated, concurrent search with 64 threads

Models 16procs × 4thrs 8procs × 8thrs SMP 64 thrs

M02 1174.54 1210.41 2309.50

M03 2694.65 1282.78 6376.42

M04 2827.35 3135.17 7531.00

M05 3493.98 1876.93 5157.15

M06 2163.56 1632.75 2323.75

M07 27334.9 33764.55 3278.63

M09 67.19 66.85 34.31

M010 71.19 53.80 33.98

Table 4: Performance of different settings

We run more experiments with different strategies in the hope to find
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better parameter sets. Table 5 shows the performance of 4 processes
each with 8 threads, 8 processes each with 16 threads, 32 processes each
with 4 threads, and 4 processes each with 32 threads, for the UC models.
Again for models M02, M03, M04, M05, M06 all parameter sets for the
distributed solver perform well (finish within 1 hour). However, none of
them find a satisfactory solution for M07 within 2 hours.

Experiments with more parameter sets

Models 4× 8 thrs 8 × 16 32 × 4 4 × 32

M02 1520.47 1772.02 1706.11 1521.34

M03 2284.45 2733.67 2333.94 2522.40

M04 1290.76 3093.91 3567.90 2673.96

M05 2357.25 3303.70 3038.62 3793.72

M06 1596.44 1785.52 2487.28 2965.64

M07 20389.71 57913.56 7200∗ 7200∗

M09 63.70 82.67 85.68 67.55

M010 58.26 62.9 95.66 59.48

Table 5: More performance results of coordinated, concurrent solver.
The entry with * timed out after 2 hours

4.2 Flexible configurations

Installing a control call back (such as the heuristiccallback) disables some
MIP features in CPLEX. In our coordinated, concurrent-search solver,
the default dynamic search is replaced with regular branch-and-cut, and
that can be one of the reasons why our solve does not perform well on
M07. As we have shown that the default set and strategy employed in
CPLEX are in general effective and robust for UC problems, when there
are enough processors, we consider keeping one instance of the default

solver without the interference of control callbacks.
Ideally, the best primal bound among all current solvers should still

be used to set the cutoff for the default solver, the current CPLEX imple-
mentation does not yet support dynamically changing the cutoff value.
In our current implementation, we allow the user to control whether to
instrument the default solver with the heurisitccallback during concur-
rent searches. One advantage of such configuration is that even in the
worst-case, distributed search is at least as fast as standalone CPLEX.

Fig. 1 shows for the UC models the performance of the coordinated,
concurrent solver against that of the standalone CPLEX using the same
number of threads. For all models the concurrent solver is faster than
CPLEX. Significant performance improvement is observed for M03, M04,
M05, M07. Also all solves complete within 1 hour.
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Figure 1: Performance comparison. In concurrent, one solver is CPLEX
default, and the other uses the more heuristic strategy (see appendix for
detailed parameter set)

We can imagine other configuration patterns for the concurrent solver.
For example, the solvers do not have to use the same number of threads;
callbacks are installed to a subset of the solvers; and information sharing
occurs only among certain subsets. As for which configuration is the
best for the UC models, machine learning techniques might be applied
to identify some of the key features.

5 Parallel search (approach b)

Branch-and-bound has been well studied in the literature, yet the dis-
tributed implementation coupled with CPLEX for fast solution of unit
commitment problems presents many questions and brings major engi-
neering challenges.

The first question is whether there is enough parallelism, i.e., number
of nodes in the tree, for a massively parallel computer. Earlier, we showed
that for the UC models there oftentimes are many nodes waiting to
be explored in the tree, thus there is potential performance reward in
adopting a massive parallel solver.

The next question is when parallel search should be applied. Some
of the CPLEX MIP features do not migrate easily to the distributed-
memory setting. As the search space is enormous for any brute force
branch-and-bound even on massively parallel computers, distributed branch-
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and-bound starting from the root is not likely to perform well. We have
shown that coordinated, concurrent searches are quite effective for most
of the UC models. Parallel search should probably be combined with con-
current search, and start when all solvers have gathered enough nodes to
explore and no significant reduction in the optimality gap has been made
for a while.

The third question to answer is how many parallel processors will
compensate the parallel overhead and bring tangible performance im-
provement for distributed branch-and-bound. Early studies revealed the
limited increase in parallelism does not always improve the performance.
This is largely due to the nature of the branch-and-cut search. With
any strategy there is always the possibility that with more processors the
search takes a tortuous path. Although the absolute number of nodes
explored per unit time increases with the number of processors, the exe-
cution time may actually increase. At extreme scale for limited problem
size, however, different behavior might be observed.

An implementation of parallel search is essential for answering some of
these questions and evaluating design choices for the ultimate massive-
scale solver. To this end, we first evaluate the PICO parallel solver.
Unfortunately PICO+CPLEX ran into many problems at the time we
tried, and we had to abandon that choice. Instead, we develop our own
(prototype) implementation in MPI.

For a high-performance MPI implementation, there are many design
choices, including how the tree is maintained (should there be a master
centrally managing the tree or should there be a peer-to-peer system
among the workers), whether the poll-and-push communication model
or interrupt-and-pull model should be used, how frequent polling should
occur, how many nodes stay within the CPLEX solver and how many
nodes are shared in the distributed tree, how many nodes to grab during
the load-balancing phase when a server runs out of work, and what data
structure should be used for the distributed tree.

We make the following choices in our MPI implementation. We adopt
the poll-and-push strategy between the master and the workers. That is,
the master polls and pushes work to the workers at predefined intervals.
As the number of nodes increase at each worker, the interval increases to
reduce the polling overhead. There is one node in the distributed branch-
and-cut tree representing a subtree in the solver. The node contains the
set of bound changes and added local cuts relative to the root node. The
distributed tree is stored in the master, and is implemented with a heap
(using the associated lower bound as the key). When a worker runs out
of work, first the nodes in the distributed tree are taken, then the master
grabs nodes from other worker’s internal tree. With the current design
there is only one master managing the distributed search tree.

Fig. 2 shows the performance scaling of parallel search with a test
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Figure 2: Distributed search performance

model with 1 MPI process, 2 MPI processes, and 4 MPI processes. As the
number of processes increases, the execution time decreases. Although
the parallel efficiency of parallel search is reasonable, the performance of
parallel search on the UC models is far worse than coordinated concurrent
searches, and even worse than standalone CPLEX. In fact, parallel search
does not complete within the 2 hour time limit for M02, M03, M04, M05,
M06, and M07. We had to abort the runs for these models. For example,
parallel search did not finish within 5 hours for M02.

Several factors contribute to the poor performance of parallel search.
The first is that frequent transferring of nodes during the initial phase of
parallel search precludes certain optimization heuristics in CPLEX. The
second is due to the interruption of the workers with constant polling.
Also once each worker has enough nodes, there is no exchange of current
best nodes among the solvers and some solvers can get stuck with a
region with poor solutions. This behavior is reflected in the big difference
between the current best solutions found by each solver during the search
process. In our experiment with M02 for instance, one solver finds a
solution with 6.39% gap, and for more than 60 time steps, the other
solver is still stuck with the 99.31% gap.

Although straightforward parallel search (with current design choices)
does not perform well on the current models, it actually complements the
coordinated, concurrent search approach. In fact, we believe the ultimate
distributed, massive-scale solver should be a combination of the two.
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6 Prospect of combining the two approaches

In section 3 we showed that the prompt exchange of bounds and solu-
tions among concurrent solvers work well for most of the UC models.
Intuitively, this approach can be considered as starting multiple differ-
ent search heuristics in the neighborhood of the current good solutions.
The advantage is that all solvers quickly catch up with each other and
can collectively explore this neighborhood. Fig. 3 shows this lock step
behavior of the concurrent solvers. All the step curves in the plot have
similar shapes. And once there is a decrease of the optimality gap in one
of the solvers, the others quickly follow.

Similar behavior is observed with other models. Fig. 4 shows the gap
decrease step curve for M07. Again we see lock step decrease of gaps
among the solvers. The problem with M07, however, is that for a very
long period of time (between 1000 seconds and 3500 seconds), no solver
is able to improve the gap. One can imagine a scenario where all solvers
end up in the same neighborhood of the search space, and the work they
do may be repetitive.

In section 5 we showed that parallel search at the top of the search
tree can disrupt the search strategies of CPLEX with polls, stops, and
grabbing nodes, and good solutions are not propagated quickly to all
solvers. Yet parallel search is efficient in evaluating a large number of
nodes when load balancing occurs rarely and there is minimal interrupt
to CPLEX.

We propose combining concurrent solve with parallel solve based on
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our study. First, coordinated, concurrent search is invoked with as many
different parameter sets as possible. It keeps running as long as the
bounds improve (with large enough increments). When a large number
of nodes are created on each process and the bounds stop improving for
some iterations, we switch to parallel solve. At this stage, the distributed
branch-and-bound happens down the search tree, and minimal or no
load-balancing is necessary (thus minimal interrupt to CPLEX). The
prerequisite for the combination to work is that concurrent solve can
generate enough parallelism for the later parallel solve.

Earlier studies have showed that on average there can be many nodes
waiting to be explored. One is tempted to conclude that using multiple
solvers the available parallelism will multiply. The following figures show
that this not always true.

Fig. 5, 6, 7, 8, 9, 10 show the amount of parallelism (number of nodes
to be explored) during the search with each worker for models M02,
M03, M04, M05, M06, and M07, respectively. We use 16 processes (each
with a different parameter set) and 4 threads per process. In each plot
different curves show the amount of nodes at different solvers. For M02,
M03, M04, M05, and M06, the range is between 0 and several thousands.
At any moment the number of nodes in all solver trees is certainly not
16 times that in the standalone CPLEX. Sometimes there are even fewer
nodes collectively in the 16 trees than in the standalone CPLEX tree. Yet
this is not bad because it shows that the pruning through shared bounds
is effective. In M07, however, the amount of nodes steadily increases and
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that is where we expect the combination search scheme will work.
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In the ultimate, massive-scale solver for the UC models, two scenarios
are most likely. Either the problem is solved completely in the concurrent
solve phase, or a large number of nodes are left for the parallel solve phase.
We believe the combination approach is the best candidate for utilizing
modern supercomputers to solve large MIP problems.

7 Conclusion and future work

We present two versions of distributed-memory solver implemented in
MPI. One adopts the coordinated, concurrent approach, and the other
parallelizes the branch-and-cut search tree. Very promising performance
results are achieved with the concurrent solver. In our study we show at
least one set of parameter sets that is always faster than the standalone
CPLEX and achieves good speedups for most of the model files. In fact, it
is ready to be evaluated with many more processors. The current parallel
search approach does not perform well. Although the implementation
itself can be further fine tuned and improved, we do not believe that it
alone is a suitable implementation for the massive scale solver.

Our study shows complementary behavior of the two approaches, and
we propose a strategy for combining the two. The ultimate implementa-
tion with the advantages of the two solvers may bring drastic improve-
ment to performance on large-scale parallel computers.

14



 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  20  40  60  80  100  120  140  160  180

pa
ra

lle
lis

m

progress

M03 16 procs

’M03_10_nodes.dat’
’M03_11_nodes.dat’
’M03_12_nodes.dat’
’M03_13_nodes.dat’
’M03_14_nodes.dat’
’M03_15_nodes.dat’
’M03_16_nodes.dat’
’M03_1_nodes.dat’
’M03_2_nodes.dat’
’M03_3_nodes.dat’
’M03_4_nodes.dat’
’M03_5_nodes.dat’
’M03_6_nodes.dat’
’M03_7_nodes.dat’
’M03_8_nodes.dat’
’M03_9_nodes.dat’

Figure 6: M03
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Figure 7: M04
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Figure 8: M05
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Figure 9: M06
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Figure 10: M07

Based on these results, IBM would like to explore a future engage-
ment with LLNL to continue research in this important field. As part of
such research, we anticipate evaluating the concurrent solve with more
processes. As mentioned in Section 3.1, setting different random seeds is
a way of increasing parallelism for the distributed memory implementa-
tion. We also would like to study the best approach to combine the two
solvers described in this report and to conduct more extensive studies
with other mixed integer programming problems.
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A Parameter Sets

static struct paramvalue nocuts[] = {

LONGPARAM (CPX_PARAM_CUTPASS, -1),

ENDPARAM

};

static struct paramvalue aggrootcuts[]= {

INTPARAM (CPX_PARAM_CLIQUES, 1),

INTPARAM (CPX_PARAM_COVERS, 3),

INTPARAM (CPX_PARAM_FLOWCOVERS, 1),

INTPARAM (CPX_PARAM_FRACCUTS, 2),

INTPARAM (CPX_PARAM_GUBCOVERS, 1),

INTPARAM (CPX_PARAM_IMPLBD, 2),

INTPARAM (CPX_PARAM_MIRCUTS, 1),

INTPARAM (CPX_PARAM_MCFCUTS, 1),

INTPARAM (CPX_PARAM_FLOWPATHS, 1),

INTPARAM (CPX_PARAM_ZEROHALFCUTS, 1),

ENDPARAM

};

static struct paramvalue aggprob[] = {

INTPARAM (CPX_PARAM_PRESLVND, 2),

INTPARAM (CPX_PARAM_PROBE, 3),

ENDPARAM

};

static struct paramvalue nonodecuts[]= {

INTPARAM (CPX_PARAM_COVERS, 1),

INTPARAM (CPX_PARAM_IMPLBD, 1),

ENDPARAM

};

static struct paramvalue allprimal[] = {

INTPARAM (CPX_PARAM_STARTALG, 1),

INTPARAM (CPX_PARAM_SUBALG, 1),

ENDPARAM

};

static struct paramvalue moreins[] = {

INTPARAM (CPX_PARAM_RINSHEUR, 100),

ENDPARAM

};
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static struct paramvalue moregomory[] = {

INTPARAM (CPX_PARAM_FRACCAND, 10000),

LONGPARAM (CPX_PARAM_FRACPASS, 10),

ENDPARAM

};

static struct paramvalue moreprob[] = {

INTPARAM (CPX_PARAM_PROBE, 1),

ENDPARAM

};

static struct paramvalue noprob[] = {

INTPARAM (CPX_PARAM_PROBE, -1),

ENDPARAM

};

static struct paramvalue aggrheur[] = {

LONGPARAM (CPX_PARAM_HEURFREQ, 3),

INTPARAM (CPX_PARAM_RINSHEUR, 20),

ENDPARAM

};

static struct paramvalue noheur[] = {

LONGPARAM (CPX_PARAM_HEURFREQ, -1),

ENDPARAM

};

static struct paramvalue moreheur[] = {

DOUBLEPARAM (CPX_PARAM_HEUREFFORT,1e+75 ),

ENDPARAM

};

static struct paramvalue nonodeheur[] = {

LONGPARAM (CPX_PARAM_HEURFREQ, 100000000),

INTPARAM (CPX_PARAM_RINSHEUR, 100000000),

ENDPARAM

};

static struct paramvalue startprimal[] = {

INTPARAM (CPX_PARAM_STARTALG, 1),

ENDPARAM

};

static struct paramvalue startbarrier[] = {
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INTPARAM (CPX_PARAM_STARTALG, 4),

ENDPARAM

};

static struct paramvalue fastnodes[] = {

INTPARAM (CPX_PARAM_COVERS, 1),

INTPARAM (CPX_PARAM_IMPLBD, 1),

LONGPARAM (CPX_PARAM_HEURFREQ, 100000000),

INTPARAM (CPX_PARAM_RINSHEUR, 100000000),

ENDPARAM

};

static struct paramvalue bestbound[]= {

INTPARAM (CPX_PARAM_CLIQUES, 3),

INTPARAM (CPX_PARAM_COVERS, 3),

INTPARAM (CPX_PARAM_FLOWCOVERS, 2),

INTPARAM (CPX_PARAM_FRACCUTS, 2),

INTPARAM (CPX_PARAM_GUBCOVERS, 2),

INTPARAM (CPX_PARAM_IMPLBD, 2),

INTPARAM (CPX_PARAM_MIRCUTS, 2),

INTPARAM (CPX_PARAM_MCFCUTS, 2),

INTPARAM (CPX_PARAM_FLOWPATHS, 2),

INTPARAM (CPX_PARAM_ZEROHALFCUTS, 2),

INTPARAM (CPX_PARAM_PRESLVND, 2),

INTPARAM (CPX_PARAM_PROBE, 3),

DOUBLEPARAM(CPX_PARAM_BTTOL, 0.1),

ENDPARAM

};

static struct paramvalue steepedge[] = {

INTPARAM (CPX_PARAM_DPRIIND, 2),

ENDPARAM

};

static struct paramvalue purebb[] = {

LONGPARAM (CPX_PARAM_HEURFREQ, 100000000),

INTPARAM (CPX_PARAM_RINSHEUR, 100000000),

INTPARAM (CPX_PARAM_CUTPASS, -1),

ENDPARAM

};

static struct paramvalue fewcuts[] = {

LONGPARAM (CPX_PARAM_CUTPASS, 1),

ENDPARAM

};
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static struct paramvalue aggcuts[]= {

INTPARAM (CPX_PARAM_CLIQUES, 3),

INTPARAM (CPX_PARAM_COVERS, 3),

INTPARAM (CPX_PARAM_FLOWCOVERS, 2),

INTPARAM (CPX_PARAM_FRACCUTS, 2),

INTPARAM (CPX_PARAM_GUBCOVERS, 2),

INTPARAM (CPX_PARAM_IMPLBD, 2),

INTPARAM (CPX_PARAM_MIRCUTS, 2),

INTPARAM (CPX_PARAM_MCFCUTS, 2),

INTPARAM (CPX_PARAM_FLOWPATHS, 2),

INTPARAM (CPX_PARAM_ZEROHALFCUTS, 2),

ENDPARAM

};

static struct paramvalue dualbound[] = {

LONGPARAM (CPX_PARAM_HEURFREQ, -1), /* Heuristics off. */

/* All cuts aggressive. */

INTPARAM (CPX_PARAM_CLIQUES, 3),

INTPARAM (CPX_PARAM_COVERS, 3),

INTPARAM (CPX_PARAM_DISJCUTS, 3),

INTPARAM (CPX_PARAM_FLOWCOVERS, 2),

INTPARAM (CPX_PARAM_FRACCUTS, 2),

INTPARAM (CPX_PARAM_GUBCOVERS, 2),

INTPARAM (CPX_PARAM_IMPLBD, 2),

INTPARAM (CPX_PARAM_MIRCUTS, 2),

INTPARAM (CPX_PARAM_ZEROHALFCUTS, 2),

INTPARAM (CPX_PARAM_MCFCUTS, 2),

ENDPARAM

};

static struct paramvalue defaultbound[]= {

ENDPARAM

};
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